Divergent versus convergent evolution is directly related to soil complexity from two general perspectives. With respect to evolutionary trajectories, convergence or divergence implies changes in complexity over time in the form of decreasing or increasing variability, irregularity, differentiation, and diversity. Thus, measuring, estimating, or assessing convergence and divergence entails measuring or modeling changes in complexity. From the perspective of soil complexity more broadly, complexity has many important aspects and implications, including pedodiversity, spatial variability, and pedometrics, as well as evolutionary pathways. However, with respect to pedogenesis, questions about convergence and divergence are arguably the most fundamental. Specifically, changes in complexity over time are relevant to the following: • Models and understanding of soil formation and development:These provide the lenses through which we evaluate soils. Viewing the soil from different perspectives can lead to quite different conclusions, and as discussed below, some frameworks are explicitly linked to convergent (especially) and divergent development.If only convergence or divergence is dominant, then it is important to choose an appropriate conceptual model. If both are significant, it implies a need to use multiple frameworks or one that allows for either convergence or divergence. This also applies to genesis and development of landscapes, ecosystems, and hydrologic systems, because pedological, geomorphic, ecological, and hydrologic system development is inextricably intertwined.