The aim of this work was not to elucidate the physicochemicaldrivers o的中文翻譯

The aim of this work was not to elu

The aim of this work was not to elucidate the physicochemical
drivers of TE accumulation in plant and snails, but rather to compare
the main parameters explaining variations in TE contents in both
organisms. Our results showed that TE contents in plants and snails
were depending on very different parameters. These differences are
obviously due to the different exposition pathways, and finally to the
specific physiology of each type of organism. In fact, because of the
development of their root system, plants can accumulate TE from
deeper soil layers than do snails, which are only exposed to the topsoil
(Berger and Dallinger, 1993). Moreover, the activity of plant roots and
associated microorganisms may trigger localized soil modifications,
leading to a significant increase or decrease of pH, redox potential
and/or organic matter content (Ehrenfeld, 2013). Thus, these so-called
rhizosphere processes, can considerably modify the speciation of TE
(Kabata-Pendias, 2004) and their availability for plants; at the opposite,
snails do not significantly modifysoil properties and havevery likely no
effect on TE speciation (Coeurdassier et al., 2007). Also, the fate of TE in
plants and snails is very different, in that snails are able to excrete some
accumulated TE (Gimbert et al., 2008b), while in plants they are stored
in the roots or above ground tissues but are rarely excreted (Weis and
Weis, 2004). Lastly a major difference between these biological receptors lies in their source of contamination. Indeed plants are mainly
exposed to TE via the soil, whereas snails are exposed to both soil and
contaminated plants. Our results indeed confirmed that both sources
of contamination had a significant influence on snail's TE content.
0/5000
原始語言: -
目標語言: -
結果 (中文) 1: [復制]
復制成功!
The aim of this work was not to elucidate the physicochemicaldrivers of TE accumulation in plant and snails, but rather to comparethe main parameters explaining variations in TE contents in bothorganisms. Our results showed that TE contents in plants and snailswere depending on very different parameters. These differences areobviously due to the different exposition pathways, and finally to thespecific physiology of each type of organism. In fact, because of thedevelopment of their root system, plants can accumulate TE fromdeeper soil layers than do snails, which are only exposed to the topsoil(Berger and Dallinger, 1993). Moreover, the activity of plant roots andassociated microorganisms may trigger localized soil modifications,leading to a significant increase or decrease of pH, redox potentialand/or organic matter content (Ehrenfeld, 2013). Thus, these so-calledrhizosphere processes, can considerably modify the speciation of TE(Kabata-Pendias, 2004) and their availability for plants; at the opposite,snails do not significantly modifysoil properties and havevery likely noeffect on TE speciation (Coeurdassier et al., 2007). Also, the fate of TE inplants and snails is very different, in that snails are able to excrete someaccumulated TE (Gimbert et al., 2008b), while in plants they are storedin the roots or above ground tissues but are rarely excreted (Weis andWeis, 2004). Lastly a major difference between these biological receptors lies in their source of contamination. Indeed plants are mainlyexposed to TE via the soil, whereas snails are exposed to both soil andcontaminated plants. Our results indeed confirmed that both sourcesof contamination had a significant influence on snail's TE content.
正在翻譯中..
結果 (中文) 2:[復制]
復制成功!
这项工作的目的不是要阐明的物理化学
的TE积累在植物和蜗牛的驱动,而是以比较
说明在两个TE内容变化的主要参数
的生物体。我们的结果表明,在植物和蜗牛的TE含量
分别取决于非常不同的参数。这些差异是
明显由于不同论述通路,最后到
每一种生物体的特定生理学。事实上,由于中
其根系发育,植物可以积累TE
更深的土层比蜗牛做的,这是唯一暴露在表土
(Berger和达林格,1993)。此外,植物根系和活性
相关的微生物可能会引发局部土壤的修改,
导致显著增加或pH降低,氧化还原电位
和/或有机物含量(埃伦费尔德,2013年)。因此,这些所谓的
根际过程,可以显着修改的TE的形态
(绮田-Pendias,2004)以及它们对植物的可用性; 在相对的,
蜗牛不显著modifysoil属性和havevery可能没有
对TE形态的影响(Coeurdassier等人,2007)。另外,TE中的命运
植物和蜗牛是非常不同的,在该螺能够排泄一些
积累的TE(Gimbert等人,2008年b),而在植物中它们被存储
在根或地上组织,但很少被排泄(韦斯和
韦斯,2004年)。最后这些生物受体之间的主要区别在于它们的污染源。
事实上,工厂,主要是通过土壤接触到TE,而蜗牛接触到土壤和
污染植物。我们的研究结果确实证实了这两种来源的
污染对蜗牛的TE含量显著的影响。
正在翻譯中..
結果 (中文) 3:[復制]
復制成功!
这项工作的目的是不阐明的物理化学在植物和蜗牛的TE积累的驱动程序,而是比较解释TE内容的变化的主要参数生物。我们的研究结果表明,植物和蜗牛中的Te含量取决于非常不同的参数。这些差异显然由于不同的展会途径,最后到各类型生物的特定生理学。事实上,因为植物根系的发育,植物可以积累深层土壤层比蜗牛,只露出表土(伯杰和达林格,1993)。此外,植物根的活性和相关微生物可能触发局部土壤改良,导致pH值显著增加或减少,氧化还原电位和/或有机质含量(费尔德,2013)。因此,这些所谓的根际过程,可以大大改变物种的形态(Kabata Pendias,2004)及其对植物的有效性;在对面,蜗牛不明显modifysoil性质,有可能没有对技术形态的影响(coeurdassier et al.,2007)。此外,命运的植物和蜗牛是非常不同的,在蜗牛能分泌出一些积累的TE(Gimbert et al.,2008b),而它们存储的植物在根或地上组织,但很少排出体外(魏丝和魏丝,2004)。最后,这些生物受体之间的主要区别在于它们的污染源.。事实上,植物主要暴露于TE通过土壤,而蜗牛暴露于土壤和被污染的植物。我们的研究结果确实证实,这两个来源污染对钉螺TE含量有显著影响。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: